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Reversible reactions
k
(A)==(B)
-1

are regarded as a series of irreversible processes,
ie.

(A)so —kl" (B)a1 —'k;!’ (A)p: L Baz ---

4 A)mis = (B~ (A)si = (B)ains

—1
—elc.

(A)pg-molecules ((A)-molecules that have been
(B) zero times) are, of course, irreversibly
transformed into (B)a;-molecules ((B)-mole-
cules that have only been (A) once) and these, in
turn, into (A)p;. (A)p; and (B)a; denote those
(A)- and (B)-molecules that have been (B) or
(A) i times, respectively. This transformation has
a formal resemblance with non-branched
radioactive decay but the rate constants alternate
between k; and k_;. Solutions of the linear
differential equations describing the time de-
pendence of the (A)g;- and (B)a;-molecules and
features of these solutions are reported for the
general case K=ky/k_;#1 as well as for the
special case K=1. The results are used for
accurate determination of the stereospecificity of
reversible first- and pseudo first-order reactions.
By comparing only the specific rotation of par-
tially resolved (A) with that of recovered (A)
after some reaction, the stereospecificity of the
reaction may be estimated using the results above
since a fraction of the recovered (A)-molecules
have been (B) one or more times. Thus the
method demands only partially resolved (A) and
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no knowledge of the absolute stereochemistry of
either (A) or (B).

The stereochemistry of the reaction shown in
Scheme 1 has been investigated ' as part of our
reaction mechanistic studies of potentially bifunc-
tionally catalyzed 1,3-proton transfer reactions.’
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Scheme 1.

We wished to find out to what extent the
rearrangement takes place in the way shown in
Scheme 1, i.e., enantiospecifically and supra-
facially. Such investigations usually involve con-
siderable work.? Sometimes completely optically
resolved starting material and product, as well as
knowledge of their relative configurations, are
needed. Since the catalyzed rearrangement in
Scheme 1 is a reversible reaction, the thought of a
labour-saving possibility occurred to us. Let us
consider the generalized reversible reaction (1)
and assume that, at the start of the reaction, pure
but only partially resolved compound (A) is
present.

k
A)==(®) )

The reaction transforms (A)-molecules into (B)-
molecules and these are converted back to (A)
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because of the reversibility. Therefore, as the
reactions proceeds, the fraction of the (A)-
molecules that have reacted to (B)-molecules will
increase. If the degree of stereospecificity of the
reaction is <100 %, the optical purity of (A) will
decrease with time. This indicates the possibility
of determining the stereospecificity using only
the specific rotation of compound (A) at the
reaction start and at time ¢, i.e., knowledge of the
optical purity of compound (B) would be un-
necessary. A closer inspection of this possibility
shows, however, that of the (A)-molecules there
are those that have been (B)-molecules not only
once but twice, three times, etc. This led us to the
formulation of reaction (1) as a series of irreversi-
ble processes as shown by eqn. (2). (A)go-
molecules ((A)-molecules that have been

(A)Boﬁ’ (B)a1 A(A)m-—k—l» Blaz..... —3

Aair = B)a =53 (A)gi —L B)aiss —
etc. )]

(B) zero times) are of course irreversibly trans-
formed into (B);-molecules ((B)-molecules that
have been (A) only once) and these in turn into
(A)p1- (A)p; and (B)a; denote those (A)- and
(B)-molecules that have been (B) or (A) i times,
respectively. (A)p;- and (B)a;-molecules can, of
course, never become (A)g;_;- or (B)a;_;-mole-
cules again. This transformation of reaction (1)
bears a formal resemblance to non-branched
radioactive decay (3).
o2 o) @ mts . @
The solutions of the differential equations
describing the time-dependence of the concentra-
tions in (3) have been reported by Rutherford,
Chadwick and Ellis.* The rate constants in a
radioactive decay chain are usually all different.
However, for a transformed reversible reaction
(2), the rate constants are either all equal
(K=ki/k_1=1) or alternate between k; and k_,
(K=ky/k_1#1). The special case K=1 has been
treated by us previously in a short
communication,” and in this paper both these
special cases will be treated in detail. The results
will be used for accurate determination of the
stereospecificity of reversible first- or pseudo
first-order reactions.

This view of reversible reactions as a series of
irreversible processes also applied to the revers-
ible transport of molecules between stationary
and mobile phases in chromatography and led to
an improved theory of chromatography.5 It has
also been used in the study of degenerate
carbocation rearrangements.’

Note. Two of the three reviewers of this paper
expressed their opinion that the present authors
in their treatment have regarded identical mole-
cules as distinguishable particles. To avoid fur-
ther confusion we wish to make the following
statement: it is only claimed that the reversibility
of the reaction (A)<(B) implies that there are
(A)- and (B)-molecules that have been (B) and
(A) respectively once, twice, ... i times etc. By
using the formulation of the reversible reaction as
a series of irreversible processes and common
rate equations, analytical expressions are
obtained for e.g. the numbers of (A)-molecules
that have been (B) once, twice. . . i times etc. It is
of course not possible to point out a specific
molecule and claim that just this molecule has
been (B) i times.

RESULTS AND DISCUSSION

Using the above classification of (A)- and
(B)-molecules with respect to the number of
times they have reacted to compounds (B) or
(A), respectively, the optical rotation of (A) at
time ¢ can be expressed as:

an=l- [anl] - 20 [(A)g] @)

In (4), [@a] is the specific rotation of (A) at time
t, | is the length of the polarimetric cell and
[(A)gi] is the concentration of (A)-molecules
which have been (B) i times. In eqn. (4),

g[(A)m]

is, of course, equal to the total concentration of
(A).

However, for reactions that are partially
stereospecific, eqn. (4) is a convenient starting
point for a derivation of an expression for ay,.
Let us assume that the partial stereospecificity is
only due to the reaction (A)— (B) and (B)— (A)
and denote these stereospecificities by x and y,
respectively. In addition, we assume that no
racemizations of either (A) or (B) take place
independently of the just mentioned reactions.
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The specific rotation of the (A)g;-molecules must
therefore be [aag) - x -y, and that of the (A)g;
becomes [aao] © x' - ¥'.

Thus, under these conditions a,, is described
by

an=! " [@a0] gt(A)mlx‘y‘ )

For simplicity, we therefore denote x'y'=z'. The
specific rotation [aa,] of (A) at time ¢, which can
be measured after isolation of (A), divided by
[@ao] can be written:

©

[aAt] _ |§0 [(A)Bi]z‘ _i aizi (6)

a5 (el =
i=0

where a;=[(A)gi]/ 20 [(A)gi]-
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then the stereospecificity z may be simulated.
Obviously, we neither need to start with com-
pletely resolved (A) nor have any knowledge of
the optical purity of (B) at any time if the
assumptions above are fulfilled.

We will show below that the coefficients a; may
be evaluated, using the transformation shown in
the introduction of reversible reactions into a
series of irreversible processes.

The special case when the reversible reaction
has an equilibrium constant K=1 is particularly
simple. Such reactions include racemizations,
when (A) and (B) are enantiomers, or symmetric
reactions (degenerate reactions) where (A) and
(B) are identical. For symmetric reactions, eqn.
(2) transforms into eqn. (7) in which all the rate
constants are equal and where (A); represents
those (A)-molecules that have reacted i times to
give (A) again

k k k k
. (A)—> (A)— (A)2 .... ™ (A); ....—™
Thus eqn. (6) shows that if [aa]/[@ac] is mea- k K
sured and the coefficients a; can be estimated,  (A);— (A)z+1— etc. )
0r (]
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Fig. 1. Shows the dependence of [(A)}/[(A)] for i=0—5 on kt. The curves make up a universal
representation of all reversible first- or pseudo first-order reactions with K=1 and all degenerate or

symmetric reactions.
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Fig. 2. Shows the dependence of [(A)g;]/[(A)] and [(B)ai)/[(A)] on k¢ for reversible first-order or
pseudo first-order reactions having K=k /k_;=10. The curves make up a universal representation of
all such reactions with K=10 in the sense that the curve sets are independent of the absolute values of
kl and k~l'

((A)zisy and (A)y in eqn. (7) correspond to  [(A)]=[(A))(K'{/i!) e (8)
(B)ai+1 and to (A)p;, respectively, in eqn. (2)).

The solutions to the rate equations are particular-  previously been reported by us® and some of
ly simple for this special case (cf. eqn. (8)) and  them are graphically displayed in Fig. 1.

have The solution of the general case when K#1 will
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be outlined below. The time-dependence of
[(A)gi] and [(B)4;] can be obtained by solving the
following rate eqns. (9)—(11):

"K';)B"] —ki[(A)sol; (i=0) ©)
———d[(];?Ai] =ki[(A)pia]—kal(B)ail; (i#0) (10)
d[(A)si]

o kalBal-kl(A)sl (#0) (11)

The solution of eqn. (9) is straightforward, and
eqn. (12) is obtained where [(A)] represents the
initial concentration of (A).

[(A)sol=[(A)] - ™" (12)

Equations (10) and (11), on the other hand, are
linear differential equations of the first order®
and have as solutions eqns. (13) and (14),
respectively

[(B)ail=e™" (j ek [(A)pini] dH’Dl) (13)

(14)

where D; and D, are constants which are
obtained using the conditions [(B)a;]=0 and
[(A)g;}=0 at =0 and i#0.

Thus we use the solution of [(A)go] to solve for
[(B)a1], which in turn is used in the solution for
[(A)g1], and so on. Through studies of the
systematics of a number of solutions of [(B)ai]
and [(A)g;] we have arrived at the following
recursion formulas:

[(A)gi]=e*" ( f e“'k_1[(B)ail dt+D2)

[(A)gil=

[(A)] (kkllk;cl)2'2 (k_y kl)J (a,,e"‘“+b e
(15)

[(B)ail=

[(A)]'(;%Z (k_y—ky) —(c,,e"“’+d ek
(16)
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The coefficients a;;, byj, c;j and dj; are all obtained
using the coefficients in the expressions for
(A)gi1 and (B)a; 1, respectively, as shown below
in Appendix 1.

Some of the solutions for symmetric (degener-
ate) reactions or nondegenerate reactions having
K=1 (eqn. (8)) are displayed in Fig. 1, which
shows [(A);}J[(A)] plotted vs. kt. For non-
degenerate reactions (A2B, A#B) having
K=1, (A)si+1 and (A),; have to be identified as
(B)ai+1 and (A)p;, respectively. In Fig. 2 some of
the solutions (eqns. (15) and (16)) for reversible
reactions having K=10 are shown. [(A)g)/[(A)]
and [(B)ai)/[(A)] have been plotted vs. k;t
(K=ky/k_,), respectively.

In both figures the curves describing the
behaviour of (A), and (A)py decline. All the
other curves first grow to maxima before they
decline. Furthermore, the maxima decrease in
size with kt and k¢ as the curves become broader.

The representation in Fig. 1 is universal for
reactions having K=1. For reactions with K#1,
Fig. 2 represents only the reactions for which
ki/k_;=K=10, i.e., the curves do not depend on
k, and k_; as long as ky/k_1=10.

If K is increased, the (A)g;-curves in Fig. 2,
with the exception of (A)go, will become broader
and have lower maxima. The (B),;-curves will
also become broader but their maxima increase
in size.

The areas under the curves may be calculated
by integration of the recursion formulas, eqns
(8), (15) and (16), as shown in Appendix 2. In
Fig. 1 the area under each of the curves is equal
to 1. In Fig. 2 the area under each of the [(A)g;}/-
f(A)]-curves is also equal to 1 but the area under
each of the [(B)4;)/[(A)] ones is equal to K.

The maxima of the curves in Fig. 1 may be
shown by differentiation of eqn. (8) to appear at
regular time intervals, i.e., tn.x=i/k. Further-
more, the (A);_j-curve intersects the (A)-curve
at the maximum of the (A);-curve.

For the general case (K#1) described by eqns
(15) and (16) and Fig. 2, there are also regular-
ities. If all these curves are put on the same scale
it can be shown that the point of intersection of
an (A)p;-curve and the (B);-curve appears at the
maximum of the (A)g;-curve. It may also be
proved that the intersection of the K - [(A)g;i1}/
[(A)]-curve and the [(B)a;)/[(A)]-curve is at the
maximum of the [(B)a;}/[(A)]-curve.
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APPENDIX 1

The coefficients a;, byj, c;; and dj; in eqns. (15)
and (16) were evaluated in the following way.
Combination of eqns. (16) and (14) yields eqn.
(17) if i#0.

t i-1 4

[Ad=e ek P, 3 sk
j=0 !

.(Cije-k1r+ dije—k-|')d1+D2) a7

where P= '(k—kli:_)T [(A)]

Integration of the first part of the sum and partial
integration of the second one (after multiplica-
tion with e*) gives eqn. (18)

j+l

[(A)Bi]’—'e_k"(k—lPi(_i:zl (k1=K =y G+ Gt

+1’:E:l $ (k4 kl)J—l—n( -_n) -(L;—k,):) +D )

(18)

which may also be written as eqn. (19)

+1
(Z(kl —ky)i*! G +1), ciie '+

+Z d“t (k_y—ky )™ ""'“)+D2e"‘" (19)

n=0 ( )'

Since [(A)g;]=0 for t=0 and i#0, the use of the
definition

k_P;
k_1—ky

0= yields eqn. (20)

cu_,e"‘"+

[(A)sil=0: (vg (k—l_kl)jjt_;

i1 i . g i1
+Z —dij t (k_l—kl)’—n - N e""'"+2 dije"‘")
=0 n=0 (i-n)! j=0
(20)

Comparison of eqn. (20) with eqn. (15) gives
directly that

i-1
ai0=z dij and that 4;j=Cj j-1 for ‘]*0
j=0

The double sum in eqn. (20) may be rearranged
into

:
I.

(—dik)(k_l—kl)f%

i=0 k

and comparison with eqn. (15) yields that b,,—z

dy if b,j—O for i=j and that bjy=—aj,. That
bi,—O for i=j is conluded from the results of
calculations of a number of [(A)gj].

Similarly, combination of eqns. (15) and (13)
and comparison with eqn. (16) yields relations for
Cij, Cio, dip and dj;. The results are summarized by
eqns. (21)—(29).

i-1 i1 )
ap=—b;o=Y d;;=Y ((=1)*'ai_ j+b; 1) (21)
=0 j=0
i-1 )
a;ij=Ci j-1= 2 (— l)k‘(’”l)a,;l_k for ] #0 (22)
k=j—1
i-1 i-1
b,‘j= "2 dik=z —bi-l,k for j¢0 (23)
k=j  k=j-1
i-1 .
co=—dp=Y, (—1)'a;y (24)
j=0
and for i>1
i2 )
cio=—do=Y, (di1;+(=1)Y*'ciy ) (25)
j=0
i1 . .
¢i=Y, (—-1)*Ja,;  for j#0
k=j
and for i>1 and j#0 (26)
R (LG :
ci=Y (-1) i1,k (27)
k=j—1
dij=bi~1,j—1 for j¢0 (28)
and for i>1 and j#0
i2
dij= ‘Z d'—l,k (29)
k=j—-1

Using agy=1, all coefficients a;, b;, Cij. and d;; may
be calculated, e.g., a;=1,b;; ,=(—1)i*! , Ciim=1
and dl -1 ( l)l
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APPENDIX 2

The areas under the curves in Figs. 1 and 2 may
be calculated by integration of the recursion
formulas, eqs (8), (15) and (16), from kt or k¢
equal to zero to infinity.

Integration of eqn. (8) yields

Of [(A)i]d(kl)=k7[(A)]£il!£ ekids=
i i-(n+1)4-n
k[(A)]Z-E—L— e*| =k[(A)k =

n=0 t=0
[(A)]

i.e., the area under each of the curves in Fig. 1is
equal to 1.

Integration of eqn. (15) may be performed in
the following way

JiAmldGa)=k f f(_—k)zlt(A)lz(k kL

kik'y

A n..0—kit ek - —_—
(@€' +bye™")dt kl[ k)"

(A3
j=0

e—k 1t

i j tj—n e—k_u
(_,E(,(k"_k‘) (-n)! (a"'k,"“ i ))]

=0

ik

Wl s i + ) (k)

Similarly, integration of eqn. (16) yields

j{<B>AJd(k1t)=

kik—

B g 3| g + i) Gy

These results may be used to prove that

07 [(A)sild(kt)= 07 [(A)gi-1]d(k;f) and that
Of [(B)Aad(k1t)=of [(B)arid(Kst)

Calculation of f [(A)gi]d(k,f) and f [(B)a1]

-d(k,f) then ylelds the result that the areas under
the (A)g;- and (B)a;-curves in Fig. 2 are 1 and K,
respectively.

Acta Chem. Scand. B 38 (1984) No. 3

Irrev. Processes and Stereochemistry 209
Acknowledgement. We thank the Swedish
Natural Science Research Council for support.

REFERENCES

1. a. Ek, M. and Ahlberg, P. Chem. Scr. 16
(1980) 62; b. Ek, M. and Ahlberg, P. Acta.
Chem. Scand. B 38 (1984) 211.

2. a. Ahlberg, P. and Ladhar, F. Chem. Scr. 3
(1973) 31; b. Niemeyer, H.M. and Ahlberg,
P. Chem. Commun. (1974) 799; c. Niemeyer,
H. M., Goscinski, O. and -Ahlberg, P. Tet-
rahedron 31 (1975) 1699; d. Janné, K. and
Ahlberg, P. Acta Chem. Scand. B 30 (1976)
245; e. Janné, K. and Ahlberg, P. Chem.
Commun. (1976) 1040; f. Engdahl, K.-A.,
Bivehed, H., Ahlberg, P. and Saunders, W.
H., Jr. Chem. Commun. (1983) 423; g. Eng-
dahl, K.-A., Bivehed, H., Ahlberg, P. and
Saunders w. H., Jr. J. Am. Chem. Soc. 105
(1983) 4767.

3. a. Frost, A. A. and Pearson, R. G. Kinetics
and Mechanism, 2nd Ed., Wiley, New York
1961, pp. 173-177; b. Moore, J. W. and
Pearson R. G. Kinetics and Mechanism, 3rd
Ed., Wiley, New York 1981, pp. 296—300; c.
Almy, J. Hydrogen Transfer Reactions in an
Indene System, Diss., University of Califor-
nia, Los Angeles, California 1969; d. Bergson,
G. Chem Scr. 8 (1975) 145; e. Bergson, G.,
Wallmark Rosser, I. and Meurling, L. Chem.
Scr. 8 (1975) 150; f. Almy, J. and Cram, D. J.
J. Am. Chem. Soc. 91 (1969) 4459.

4. a. Rutherford, E. Radioactivity, 2nd Ed.,
Cambridge Umversrty Press, London 1905
pp. 331-337; b. Rutherford, E., Chadwick, J.
and Ellis, C. 'D. Radiations from Radioactive
Substances, Cambridge University Press, Lon-
don 1930, pp. 10—18; c. Bateman, H. Proc.
Cambridge Phil. Soc. 15 (1910) 423.

5. Ahlberg, P. and Ek, M. Chem. Commun.
(1979) 624.

6. (iut, A. and Ahlberg, P. Chem. Scr. 18 (1981)
248.

7. Ahlberg, P., Jonsill, G. and Engdahl, C. In
Gold, V. and Bethell, D., Eds., Adv. Phys.
Org. Chem., Academic, London 1983, Vol.
19, pp. 242—-244.

8. Agnew R. P. Differential Equations, 2nd Ed.,
McGraw-Hill, New York 1960, pp. 67—70.

Received May 5, 1983.



